NAIL PLATE STRIPS / NAIL PLATES

SORTIMENT

		Length	Width	Basics	Products &
		[mm]	[mm]	Statics	Statics
				from page	from page
NAIL PLATE STRIPS 2.0	250 SD NKL 2	1200	40-400	252	256
NAIL PLATE STRIPS 2.5	250 SD NKL 2	1200	40-400	252	257
NAIL PLATE BOARDS	250 MKL 2	2500	1200		256
NAIL PLATES 2.0	250 MKL 2 MKL 3 MKL 3	120-500	40-200	252	258
NAIL PLATES 1.5 GREEN LINE	250 SD NKL 2	120-500	40-200	252	259

CE symbol

Steel with indication of the steel quality and galvanisation

Stainless steel with material number

Timber/timber connection

Timber/concrete-connection

Usage class 1

Moisture content in the building materials that corresponds to a temperature of 20° C and a relative humidity of the ambient air that only exceeds a value of 65% for a few weeks per year, e.g. in the case of buildings that are closed on all sides and heated. Comment: In UC 1, the average moisture content of most softwoods does not exceed 12 %.

Usaae class 2

Moisture content in the building materials that corresponds to a temperature of 20° C and a relative humidity of the ambient air that only exceeds a value of 85% for a few weeks per year, e.g. in the case of open buildings covered by a roof. Comment: In UC 2, the average moisture content of most softwoods does not exceed 20 %.

Usage class 3

Includes climatic conditions that lead to higher moisture contents than in UC 2, e.g. structures that are exposed to the weather without protection. Eurocode 5 / DIN EN 1995-1-1 section 2.3.1.3

n,

NAIL PLATES / NAIL PLATE STRIPS

TECHNICAL FEATURES

Geometry				
L	Length [mm]			
W(B)	Width (mm)			
T(S)	Material thickness (mm)			
Tables				

Number of connecting elements in timber

Design	
R_k	Characteristic value of a load capacity [kN]
R_{d}	Design value of load capacity [kN]
R _{90,d}	Design value of load capacity vertical to the grain
n _{ef}	Effective number of connecting elements
$Y_{\rm M}$	Partial safety factor
k_{mod}	Modification coefficient for load impact duration

Steel with indication of the steel quality and galvanisation

Stainless steel with material number

Timber/timber connection

Timber/concrete-connection

Usage class 1

Moisture content in the building materials that corresponds to a temperature of 20° C and a relative humidity of the ambient air that only exceeds a value of 65% for a few weeks per year, e.g. in the case of buildings that are closed on all sides and heated. Comment: In UC 1, the average moisture content of most softwoods does not exceed 12 %.

Moisture content in the building materials that corresponds to a temperature of 20°C and a relative humidity of the ambient air that only exceeds a value of 85% for a few weeks per year, e.g. in the case of open buildings covered by a roof. Comment: In UC 2, the average moisture content of most softwoods does not exceed 20 %.

Includes climatic conditions that lead to higher moisture contents than in UC 2, e.g. structures that are exposed to the weather without protection. Eurocode 5 / DIN EN 1995-1-1 section 2.3.1.3

Connection to timber

A connection should always consist of two opposite nail sheets. The width of the connected timbers must be the same. Only holes with their centre of gravity at least 6 mm from the nail plate edge may be used.

Design example

Load capacities in kN

Characteristic raw density of timber: $\rho k = 350 \text{ kg/m}^3$ (C24)

Characteristic value R_{v.k}

Design value $R_{z,Rd}$ ffor KLED "short"

The following proof must be kept for the design of the connection:

Connecting element load capacity

$$R_d = n_{ef} \times k_{mod} / 1.3 \times R_{v,k}$$

Nail plate load capacity in the net cross-section

$$R_d = 0.9 \text{ x A}_{net} \text{ x f}_u / y_{M2}$$
 with $A_{net} = 0.75 \text{ x b x t}$, $y_{M2} = 1.25$

according to EN 1993-1-1 6.2.3

$$R_{90,d} = 14 \times b \sqrt{\frac{h_e}{1 - h_e / h}} \times \frac{k_{mod}}{1.3}$$

Cross-tensile proof in the strap according to EN 1995-1-1 8.1.4

 Strap
 Softwood C24 100 [mm] x 160 [mm]

 Tensile rod
 Softwood C24 100 [mm] x 160 [mm]

Nail plates $2 \times 80 \times 240 \times 1.5$ steel sheet S 250 with tensile strength $f_{\parallel} = 330 \text{ [N/mm}^2]$

Threaded nails 4×50 according to ETA-13/0523 - 2×5 threaded nails in the strap and 2×6 threaded nails in the tensile rod

Usage class 2, class of load impact duration "short" \rightarrow $k_{mod} = 0.9$

Load capacity of nails in the strap

Shearing load capacity of a threaded nail 4x50 according to ETA-13/0523: $R_{vk} = 2,21$ [kN]

 $Rd = 2 \times 5 \times 0.9 / 1.3 \times 2.21 = 15.3 [kN]$

Load capacity of nails in the pull rod

Determination of nef according to EN 1995-1-1 8.3.1.1 (8): $n_{of} = n^{0.85} = 2 \times 3 \times 2^{0.85} = 10.8$

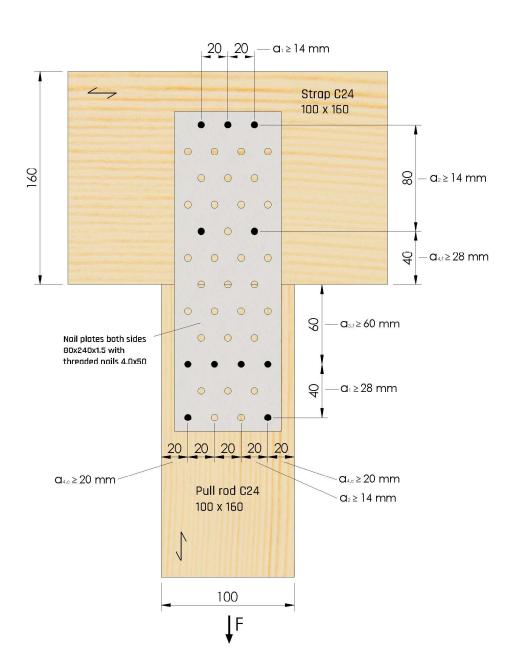
Rd = 10.8 x 0.9 / 1.3 x 2.21 = 16.5 [kN]

Load capacity of nail plates

Net cross-section surface: $A_{net} = 0.75 \times w \times d = 0.75 \times 80 \times 1.5 = 90 \text{ [mm}^2]$

 $Rd = 0.9 \times 2 \times 90 \times 330 / 1.25 = 42.8 [kN]$

The off-centre load of the nail plates is not taken into account.


Load capacity of transverse connection

Spacing of the outer connecting element row from the stressed edge: he = 120 [mm]

$$R_{90,d} = 14 \times 100 \times \sqrt{\frac{120}{1 - 120/160}} \times \frac{0.9}{1.3} = 21.2 \text{ [kN]}$$

Load capacity of connection: Rd = min (15.3; 16.5; 42.8; 21.2) = 15.3 [kN]

STATICS

Minimum and edge spacing

The regulations according to EN1995-1-1 apply for edge spacing parallel and vertical to the grain. In accordance with DIN 1052:2008-12 it is recommended that the clear distance between the outer connecting element groups of two joist hangers corresponds to 2 times the main beam height. If this is not achieved, the load capacity should be reduced.

		Force parallel to the grain	Force at a right angle to the grain			
a ₁	in grain direction	28 mm	14 mm			
a ₂	Right angle to the grain direction	14 mm	14 mm			
a _{3,t}	End grain with stress	60 mm	40 mm			
П _{3,с}	End grain without stress	40 mm	40 mm			
О _{4,t}	Loaded edge	20 mm	28 mm			
О _{4,с}	Unloaded edge	20 mm	20 mm			
See EN 1995-1-1 Tab.8.2 for other brackets than those specified between force and grain						

Minimum spacing according to EN 1995-1-1, for threaded nails Ø 4 mm in nail sheets, $\rho_{k} \le 420 \text{ kg/m}^{3}$