GH - Angle bracket KR round/elongated hole

ETA-09/0324

Properties
Steel grade
S 250 GD / S 235 JR / DX 51 D
Surface
$Z 275$ with $\mathrm{t}=3.0 \mathrm{~mm}$ and hot-dipped galvanised with $\mathrm{t}=4.0 \mathrm{~mm}$

For angle bracket basic principles, see download document

Fasteners

Fixing in concrete, masonry, steel,

Concrete screw, stud anchor, chemical anchor, screws and bolts to DIN 601 / ISO 4016

Fixing in timber with fasteners to ETA-13/0523

GH connector nails (threaded nails) $4.0 \times 35 / 40 / 50 / 60 / 75 / 100 \mathrm{~mm}$
GH screw $\quad 5.0 \times 25 / 35 / 40 / 50 / 60 / 70 \mathrm{~mm}$
The joint can also be made with an interlayer (e.g. OSB).

Nail pattern

Full nailing / partial nailing, see technical drawing or ETA

Calculation of the design value of the load-carrying capacities to ETA-09/0324

The tables contain characteristic load-carrying capacities (resistances) and design values of the load-carrying capacity (resistance) "short-term" in kN

$$
\begin{array}{ll}
\mathrm{b} & = \\
\mathrm{e} & =
\end{array}
$$

Purlin / joist width
Distance of the load application point from the bottom of the angle bracket

Remarks:
Timber strength class $350 \mathrm{~kg} / \mathrm{m}^{3}$ char. density.
Design value of the lateral load per bolt

The fastener minimum edge distances to EC 5 shall be satisfied.

All calculations and values are exclusively for GH products and their fasteners.
The load-bearing capacities were determined on the basis of ETA $13 / 0523$. It is not possible to transfer the values to third party makes.
Disclaimer:
Despite careful calculations and checking, no liability is accepted for the technical data.
Subject to change without notice

For technical drawing, see website www.holzverbinder.de

Telefon	Volksbank
*49 (7023) 743323-0	Kirchheim-Nürtingen e6
Telefax	(3L2 61290120)
*49 (7023) 743323-29	Konto-Nr. 368382001

Characteristic load-carrying capacity (resistance) and design value of the load-carrying capacity (resistance) ("short-term") in kN,
Load direction F_{1} for one angle bracket

																									120				140				160			
	4×40		4×50		4×40		4×50		4×40		4×50		4×40		4×50		Fasteners				4×40		4×50		4×40		4×50		4×40		4×50		4×40		4×50	
char.	9,8	14,0	9,8	14,0	7,9	14,0	7,9	14,0	6,6	14,0	6,6	14,0	5,7	14,0	5,7	14,0	5,0	14,0	5,0	14,0	4,5	14,0	4,5	14,0	4,0	14,0	4,0	14,0	3,7	14,0	3,7	14,0	3,4	14,0	3,4	14,0
short-term	8,9	12,6	8,9	12.7	7,2	12.7	7,2	12.7	6,0	12,7	6,0	12.7	5,2	12.7	5,2	12.7	4,5	12.7	4,5	$\underline{12,7}$	4,0	12,7	4,0	12,7	3,7	12,7	3,7	12.7	3,3	12.7	3,3	$\underline{12.7}$	3,1	12,7	3,1	12,7

Load direction F_{1} for two angle brackets

	Fasteners			
	4×40	4×50		
char.	19,6	27,9	19,6	
short-term	17,7	25	17,8	25,4

