

GH column base type D03 on concrete - height-adjustable

ETA-16/0550

General

Post supports are approved for service classes 1, 2 and 3.

Timber column

Softwood, C24 or higher strengths

Glulam

Minimum dimensions **min w x min h** see structural calculations table

Timber column fasteners

Wood screws $\emptyset 8x70 - \ell_{ef} \ge 50 \text{ mm}$

 \varnothing 10x120 - ℓ_{ef} \geq 100 mm \varnothing 10x60, \varnothing 4x60 - ℓ_{ef} \geq 40 mm

Ø12x80 - ℓ_{ef} ≥ 60 mm ℓ_{ef} = minimum thread lengths

If screws with thread length ℓ_{ef} greater than 100 mm are used, the resistance can be increased, see structural calculations table, index d)

Dowel Ø8 mm, Ø10 mm and Ø12 mm, at least S235

In concrete

The minimum concrete encased depth for concrete encased post supports is 150 mm.

Structural calculation tables

General

The table contains characteristic values of the resistance/load-carrying capacity for determining design values in ultimate limit state.

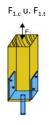
The resistances/load-carrying capacities apply to the maximum distances given in the structural calculation tables of the load application points from the top of the substrate.

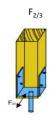
 $The \ verification \ of \ anchoring \ of \ the \ post \ support \ in \ the \ subsoil \ must \ be \ provided \ separately.$

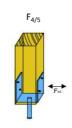
In case of horizontal loading of the post support, it is recommended to verify the resistance with the lower value

of the resistances F2/3 and F4/5, if correct layout of the post support in the place of installation is not checked.

Minimum and maximum distances


Distance from top of baseplate - top of substrate, see structural calculations table ${\bf max}~{\bf a}$


 $e_{2/3}$ - maximum distance between load application - top of substrate in load case $F_{2/3}\,$


 $e_{\text{4/5}}$ - maximum distance between load application - top of substrate in load case $F_{\text{4/5}}$

The distances e_{2/3} and e_{4/5} result from the distance max a and the centre of gravity of the load application for the load cases F2/3 and F4/5.

 $\Sigma F_{i,Ed}/F_{i,Rd} \le 1$

 ${\bf F_{1,c}}$ - compressive force (downwards) perpendicular to the baseplate

 $\boldsymbol{F}_{1,t}$ - tensile force (upwards) perpendicular to the baseplate

 $F_{2/3}$ - load perpendicular to fasteners in the fin, dowel, ties

 $F_{4/5}$ - load parallel to fasteners in the fin, dowel, ties

Resistance design value

 $F_{i,Rd} = min \{ k_{mod} \cdot F_{i,Rk,timber} / \gamma_{M,timber}; F_{i,Rk,Stahl} / \gamma_{M,steel} \}$

with k_{mod} to EN 1995-1-1 and $\gamma_{M,timber}$ = 1.3

For several connectors, 2 characteristic values are given for the steel load-carrying capacity with different partial safety factors gM, steel. Both values are to be taken into consideration when determining the design value.

Resistance analysis

Indices

^{a)} Resistance values apply to baseplates 8 mm and 6 mm thick.

b) Resistance values apply to a baseplate 8 mm thick. For a baseplate 6 mm thick, the values marked 1) to 6) are to be multiplied by the factor from the following table.

1)	2)	3)	4)	5)	6)
0,67	0,72	0,75	0,81	0,84	0,86

 $^{^{\}rm c)}$ For tensile loading by load ${\rm F}_{1,t'}$ dowels are required in addition to the given screws.

d) If screws with threaded length ℓ_{ef} greater than 100 mm are used, the load-carrying capacity $F_{1,t,Rk,timber}$ can be increased by factor f1,t,timber = (lef / 100 mm)0.9.

Ī		Post		Maximum spacings		F _{1,c} - compression		F _{1,t} - tension		F _{2/3}			F _{4/5}					
	Art.No.	min w	min h	max a	e _{2/3}	e _{4/5}	Timber	Timber Steel		Timber	Steel		Timber	Steel		Timber	Steel	
		mm	mm	mm	mm	mm	F _{1,c,Rk}	F _{1,c,Rk}	γм	F _{1,t,Rk}	F _{1,t,Rk}	γм	F _{2/3,Rk}	F _{2/3,Rk}	γм	F _{4/5,Rk}	F _{4/5,Rk}	γм
	19613201 b)	120	120	236	236	236	129,0	59,2 ¹⁾	1,00 1,10	16,3 °	6,66	1,00	8,36 5)	1,66	1,25	8,36 5)	1,66	1,25

4 screws Ø10x120

